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We consider the diffusion and spreading of chainlike molecules on solid surfaces. We first show that the
steep spherical cap shape density profiles, observed in some submonolayer experiments on spreading polymer
films, imply that the collective diffusion coefficiedd(6) must be an increasing function of the surface
coveraged for small and intermediate coverages. Through simulations of a discrete model of interacting
chainlike molecules, we demonstrate that this is caused by an entropy-induced repulsive interaction. Excellent
agreement is found between experimental and numerically obtained density profiles in this case, demonstrating
that steep submonolayer film edges naturally arise due to the diffusive properties of chainlike molecules. When
the entropic repulsion dominates over interchain attractibrgg) first increases as a function éfbut then
eventually approaches zero fé—1. The maximum value oD(6) decreases for increasing attractive
interactions, leading to density profiles that are in between spherical cap and Gaussian shapes. We also develop
an analytic mean-field approach to explain the diffusive behavior of chainlike molecules. The thermodynamic
factor in Dc(6) is evaluated using effective free-energy arguments and the chain mobility is calculated
numerically using the recently developed dynamic mean-field theory. Good agreement is obtained between
theory and simulation§S1063-651X98)00202-5

PACS numbdps): 83.10.Nn, 68.35.Fx, 68.10.Gw

I. INTRODUCTION coverage dependence. In the present context this was real-
ized in conjunction with the experiments of Albrecital.

The dynamics of polymers on solid surfaces is an inter{8], where the observed spherical cap shaped droplets could
esting theoretical problem that has important applications rebe reproduced by Monte Carlo simulations of spreading of
lated to thin surface films. A central role in such systems idlexible chains in two dimensions. Analyzed in terms of
played by the diffusive dynamics of the chains. While theFick's law with a coverage-dependebt(6), it was con-
diffusion of adatoms and small molecules on surfaces is agluded in Ref[11] thatD(#6) is a stronglyincreasingfunc-
extensively studied problerfi,2], there are relatively few tion of coverage up t@#~0.4 because of entropic repulsion
studies of the diffusion of more complicated molecules andetween the chains.
especially polymers on surfac¢3-5|. The pioneering ex- In this work our aim is to extend the work presented in
periments of Arena, Westre, and Geof@ on short-chain  Ref.[12] to carry out a systematic study of the spreading and
alcanes on metal surfaces revealed that the coverage depdliffusion of interacting chainlike molecules on surfaces. To
dence of the collective diffusion coefficiei®(6) may begin with, we present an analysis of density profiles of
show unusual features. For some molecules it is approxispreading droplets with qualitatively different forms of
mately constant, while for others it is an increasing functionD¢(6). Using Fick's law, we show how the spherical cap
of coverage for a wide range of values @&f type of shapes result from the increaseDnf( #) vs 6 and

There also has been substantial interest recently on tHen quantitatively determinB.(6) from the experimental
spreading dynamics of molecularly thin oil films on solid profiles of Ref.[8] up to ~0.4. By extensive Monte Carlo
substrate$6—10]. Many of these experiments are performedsimulations of a discrete model of interacting chainlike mol-
by depositing tiny, very flat droplets on surfaces. In the limitecules, we then comput@.(6) for all coverages and dem-
where the film becomes less than one monolayer in thickenstrate that the chainlike nature of the molecules induces a
ness, the spreading molecules are all in contact with the sustrong repulsive interaction. When this dominates over inter-
face forming a two-dimension&2D) molecular gas. In this chain attractionsD(6) first increases as a function éfas
regime, the dynamics of spreading and consequently the dededuced from the experiments, but eventually must go to
sity profiles of the film edges are determined by the diffusionzero for 6—1. The relative maximum oD () decreases
of the molecules. Experimental studies of spreading in thdor increasing attractions. We also examine the profiles of
submonolayer regimleZ—9] reveal that most of the measured spreading droplets in detail for various interactions. For the
film edge profiles are not well approximated by the Gaussiarase of pure entropic repulsion, we find excellent agreement
function but assume a steeper shqp#| that can be well between experimental and numerically obtained profiles.
fitted by a spherical cap in the rotationally symmetric caseThis demonstrates that steep density profiles can be obtained
i.e., droplet spreadinf8,9]. from energetic considerations without having to assume that

In the regime where the diffusion equati@fick’s law) is  the film edge acts as a phase boundary between a 2D con-
a valid description, a non-Gaussian profile indicates that theensate and a vapor phase, as suggested previ@lskyor
collective diffusion constanD:(6) must have nontrivial increasing attractive interactions, the corresponding droplet
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FIG. 1. Typical late-time submonolayer spreading profile from FIG. 2. Typical results for the density profile of a droplet from

e_xperlments Of. PDMS spreadl_ng on a sqve_r surfse (f'”?d numerical solutions of Eq1) with different choices of the function
circles. The height of the experimental profile is measured in ang, (6)
stroms. Dashed and dotted lines are Gaussian and spherical cap fitss*
respectively. The solid line shows the solution of Ed) using

D¢(6) shown in the insetD(6) has been normalized by the dif-

fusion coefficient in the zero coverage linid;(0).

this and the other submonolayer profiles can be fitted very
well with spherical cap functio®(x) = 65+ \r“—x=, which
is shown in Fig. 1 with a dotted linedg andr are fitting

. , . arameters In the same figure we also show a Gaussian
shapes are in between spherical cap and Gaussian Shape%rofile with a dashed line for comparison. While the shape of
Finally, we develop an analytic mean-field approach 0y, hrfile clearly follows the spherical cap shape for most of

explain the behavior of the collective diffusion coefficient the range of densities, at the lowest coverages the film edge
for chainlike molecules by using the fact tHat(#) can be displays a Gaussian s:haped tail.

expressed as the product of thermodynamic fagtpt and A qualitative way of analyzing the implications of the

effective free-energy arguments and the chain mobility issquation[1,11]

calculated numerically using the recently developed dynamic

mean-field theory{13]. Good agreement is found between do(x,t) a

theory and the numerical simulations. % ox
The outline of the paper is as follows. In Sec. Il we de-

scribe the analysis of spreading profiles from the diffusiongtarting from as-function type of initial profile, the solution
equation, which gives partial information about the coIIec—g(X,t) of Eq. (1) is an exact Gaussian profile for all times
tive diffusion coefficient. The lattice model used in this work whenD = const. In Fig. 2 we show typical results from the
is explained in Sec. Ill. The results of numerical simulations,merical solution of Eq(1) for three choices oD¢(6),
are presented in Sec. IV. We discuss briefly the results fof,¢|yding monotonicatlecreasingand increasingfunctions
athermal chains presented in REf2] and present complete ¢ coveragesD(#)=1—0.99% and D(6)=0.01+0.9%
results for chains with attractive interchain interactions. 'nrespectively. For the first case, profiles are obtained th,at are
Sec.. V we prgient the mean.-f|eld theory for the thermodyye|owthe Gaussians for high and intermediate coverages. On
namic factory, = and the mobilitym. In Sec. VI we use the  the other hand, for cases whdde(6) increases, profiles are
chain-chain pair distribution function to extract the effective ghovethe Gaussian solution. This is exactly what was ob-
pair interaction potentigl for ather_mal chains. Finally, in Sec.gerved in the experimentsee Fig. 1 and thus we can con-
VIl we briefly summarize our main results. clude thatD -(#) must be arincreasingfunction of coverage
for the range of coverages corresponding to the density pro-
files (see also Refl11]).

It is possible to determin®(6) more quantitatively by
solving density profiles from Edq1) and matching them with

As discussed in the Introduction, experimental measurethe experimental ones. We did this by using a fitting function
ments of spreading density profiles of a polymer film in thefor D¢(6) of the formDc(6) =c,+ ctantcy(6—c,)], where
submonolayer regime can be used to obtain informatiorey, C,, C3, andc, are fitting parameters. By adjusting these
about the coverage dependence of the collective diffusioparameters it is relatively easy to obtain profiles with shapes
coefficientD (). This was realized by Herminghaesal.  closely matching the experimental ones of R&f, with c;
[11], who considered the spreading of polydimethylsiloxane=0.159,c,=0.144,c3=5.174, anct,=0.345. The resulting
(PDMS) on metal surfaces, including the data of R&. A profile is shown in Fig. 1 with a solid line. The matching of
typical late-time spreading profile taken from this experimentthe profiles also fixes the normalized coverage scale from
is shown in Fig. 1. The height of the profile is measured inFick’s law corresponding to the effective layer thickness in
angstroms, but it actually describes the average areal densitige experiments. The analysis reveals tha(6) at very low
distribution of polymers on the surface. As noted in R8f, concentrations is almost constant and then monotonically in-

d0(x,t)
¢ X

@

Il. ANALYSIS OF SPREADING PROFILES FROM THE
DIFFUSION EQUATION



1866 HJELT, HERMINGHAUS, ALA-NISSILA, AND YING 57

Hen(r,d)  4e & B[ o |7 ( o )6
KT _kB_TE 2{(rl,l’;i,i’> B

[EA LN My

1 n Negg—1
A . E

s /! T & Coddu. @

[mu]
m

|
|

mdl g
\ In Eq. (2), the first term is a Lennard-Jones type of potential,
n whereJ=4€/kgT is the strength of the interaction,,; ;. is
- the distance between segmen@ndi’ of different chaind
andl’, ando was chosen such that the potential minimum
was at the distance of two in lattice units. The cutoff radius
of the potential was/10 lattice units, after which the poten-
_ _ ] o _ tial is small enough to give a negligible contribution. In the
FIG. 3. Typical configuration of a chain in the FB model with summationsn is the number of chains ardgg is the num-
Nrg=6. The segments are shown by squares. Stars denote the silgs, ¢ segments in each chain. The second term controls the
ggogcnlii‘:]tzyisth:hlgv‘\’lvfrbn;ojt dii%rggrl]itﬁ:n allowed move of one of thesti1‘fness of each chain, witlp, ; being the angle between
' two adjacent bondsandi +1 in chainl andK=E¢/kgT the
stiffness parameter. For increasiBgor decreasing tempera-
creases up to abodt=0.4, in agreement with Ref11]. The  ture T, the chains become more stiff.
resultingDc(6) from the best fits is shown in the inset of  Dynamics is introduced in the model by Metropolis
Fig. 1. We note that the behavior Bf-(6) at higher values moves of single segments, with a probability of acceptance
of # cannot be obtained from this procedure because theninfe “™ei’ksT 1], whereAH, is the energy difference be-
maximum value of the experimental profile at hand is al-tween final and initial configurations for acceptable moves to
ready less tham=0.4. a nearest-neighbor site, for which site exclusion and bond
length restrictions must be satisfied. One Monte Cadg)
time step is defined as an attempt to move each segment of
I1l. MODEL OF CHAINLIKE MOLECULES every chain. In Fig. 3 we show a typical configuration of a
chain in the FB model foNg=6. One possible move of a
To determineD(6) for all values of¢ and to study the segment is shown by the dashed line. It should be noted that
effects arising from the chainlike nature of the diffusing mol- there are two main limitations in the present model. First,
ecules on surfaces, we will in the present work use a discretgince the dynamics within the FB model consists of single
model called the fluctuating bon@FB) model [14]. This  segment moves only and there are no direct translational
minimal model of polymers is widely used for simulations of modes, the limit of a rigid rod is not well definéd7]. Sec-
many-chain systen{d5]. The idea in the FB model is that it ond, the dynamics is purely two dimensional, which assumes
is a coarse-grained model of real polymer chains. Real polythat the chain-surface attraction is strong and the chain den-
mers, such as simple polyethylene, consist of repeated segity low enough so that all chains lie flat on the surface. As
ments of CH monomers where carbon atoms are bound tashown in Sec. II, for PDMS on silver these conditions seem
each other forming a long chain. The bond length and theg be met at least foé less that about 0.4.
bond angle between adjacent carbon atoms are almost fixed.
However, the torsional angle between adjacent bonds can

have different values and thus the end-to-end distance of a IV. NUMERICAL SIMULATIONS

long chain of CH segments may vary significantly. On a A. Athermal chains

coarse-grained level then, such a chain can be described by a o )

reduced number of effective segments. To quantitatively determine the coverage dependence of

In the 2D version of FB model the chains in the modeldiffusion, we have performed extensive MC simulations us-

consist of connected segments that occupy sites on a squdrR§) the FB model'explalned in Sec. I'II. First, we consider the
lattice. Each segment prohibits all other segments from occase of fully flexible, athermal chains for which=K=0
cupying its nearest- or next-nearest-neighbor lattice sites. Ih12]- The linear size of the 2D square lattice we used was
the model(see Fig. 3, the distance between adjacent seg-L=180 for most cases. To calculafzc(¢#) we used the
ments/ can vary between2 /<13 in lattice units, where temporal decay of the Fourier tranzsformed density autocor-
the upper limit prevents bonds from crossing each othertelation function S(k,t)=S(k,0)e ¥ Pc(®t where S(k,0)
With these restrictions there are 36 different bond vectors ilbecomes constant in the hydrodynamic linkit-0. The
the model. The FB model has been shown to give staticlensity-fluctuation autocorrelation function is defined as
properties, such as pressure, in full agreement with simulaS(r,t)=(56(r,t) 56(0,0)), where 80(r,t)=6(r,t)
tions of continuum modelgl6]. Furthermore, the FB model —(6(r,t)) andS(k,t) is its Fourier transfornj18]. It is cal-
incorporates the same type of dynamics for a single chain asulated separately for each fixed value of the average nor-
the continuum Rouse modEl4]. malized coverage&=(6(r,t)), which for the FB model is
To consider the general case where there are attractivéefined to bed=4nNgg/L2. In Fig. 4 we show results of
interactions between the chains and the flexibility of indi-these calculations for the cabgg=6 with circles. The re-
vidual chains can also vary, we have used the Hamiltoniansults are normalized witD ;, which is the diffusion constant
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" ' " " cally decreasing function of. This is a striking example of
how fundamentally different the behavior of the two types of
diffusion coefficients can be.

We have also studied the effect of chain length and stiff-
ness to collective diffusion, and a summary of the results can
be found in Ref[12]. When the length of the chains in-
creases, diffusion slows down and the maximunDe{( 6)
becomes more pronounced relative to the zero coverage limit
of Dc(6=0) (see Figs. 1 and 4 in Refl2]). However,
when the 1N prefactor for diffusion with single segment
dynamics is divided out, thB(6) vs 6 curves are almost
identical forNgg=6, 24, and 48, revealing the universal be-
havior of 2D polymer diffusiorf12]. With increasing stiff-
ness diffusion slows down too, but now the maximum of
Dc(6) becomes less pronounced.

D0 /D,

FIG. 4. D(0) for three different values af as computed from
MC simulations of the FB model. Circles are fd+ 0, squares for
J=—0.5, and triangles fod= —1.0. Solid lines are only guides to
the eye. The curves are normalized by the single monomer diffusion To study the effect of attractive interactions between
coefficientD, in the zero coverage limit. The error bars are of the polymers we used the FB model with the Hamiltonian of Eq.
size of the symbols or smaller. (2) with two interaction parameters, namely=—0.5 and

J=—1.0. For the results presented here, we considered fully
of a single monomerNg=1) in the limit 6—0. Initially, ~ flexible chains K=0) of lengthNgg=6. The sizes of the
Dc(6) increases up t@~0.7, after which it rapidly ap- lattices in the MC simulations varied from 18A00 to
proaches zero. The initial behavior &c(6) is in good 180x180. _
agreement with results obtained from the shape of the The results for the two cases as obtained from the decay
spreading profiles. of S(k,t) are shown in Fig. 4. As the strength of the attrac-

It is interesting to compare the behavior BE(6) with tive interaction increases, diffusion slows down, but the

the tracer diffusion coefficienof individual chainsD;(6)  overall behavior as a function @fis qualitatively similar to

B. Chains with attractive interactions

defined by the athermal case. The main influence of the attraction is to
significantly reduce the relative height of the maximum of
P P Dc(6) [19].
DT:t“mmizl (Iri(H)=ri(0)[%), ©) To compare with the athermal case, we also calculated

D+(6) for which the results are shown in Fig. 5. When the
strength of the interaction increasé>;(6) decreases more

wherer,(t) is the position vector of thith chain at time. In rapidly as a function of concentration.

Fig. 5 we show the results from simulations for the athermal

case with circles. In the limi#— 0, Dc(0)=D+(0) and thus

we use the same normalization as in Fig. 4. As expected We also used the FB model to directly simulate the

from increased interchain blockind@+(6) is a monotoni- spreading of 2D submonolayer droplets. The chains were
initially confined to a circular region and after equilibration

T T T T the spatial constraints were removed. The consequent spread-

ing was monitored and corresponding density profiles calcu-

C. Spreading of droplets

008 lated as a function of time. We find that within the accuracy
of the fits, there is a linear relationship between the experi-
— 0.06 1 mental and MC time scales, which supports the use of the
E single-segment dynamics within the FB model.
& In Fig. 6 we show a comparison between three experi-
E 0.04 1 mental submonolayer profil¢8], profiles obtained from the
MC simulations for athermal chains, and profiles computed
0.02 - using Eq.(1) with the tanh fitting function forDc(6) as
explained previously. The agreement between all the profiles
is excellent, demonstrating the consistency of our approach.
0~00'0 10 It also shows that the behavior of the PDMS polymers used

in the experiment can be most simply explained in terms of
athermal chain dynamics, with the entropic repulsion domi-
FIG. 5. Tracer diffusion coefficienD(¢) for three different Nating. This is in contrast to the experiments of Ré],
values of]. Circles are fod=0, squares fod= —0.5, and triangles Where the steep film edges were assumed to be a 1D phase
for J=—1.0. Solid lines are only guides to the eye. The curves ardooundary between a 2D condensate and a vapor phase. Our
normalized by the single monomer diffusion coeffici@y. The  results here demonstrate that no such assumptions need to be
error bars are smaller than the size of the symbols. made; the steep spherical cap shapes of submonolayer drop-
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FIG. 6. Comparison between three experimental submonolayer 05
profiles measured after 50, 80, and 150 min following deposition of ) ' e — -
PDMS on silver[8,12] (circles, MC simulations of 2D circular
droplets from the FB model withgg=6 (squares and numerical 04 F.. = 04 11
solutions of the nonlinear diffusion equatigsolid lineg. See the * g o2 ]
text for details. .
03 .
= 00 0 w300
Igts are ex_pec_ted to b_e@nericsignature of strongly repul- F « [lattice units]
sive effective interactions. 0.2F
In Figs. 7@ and 7b) we show additional spreading pro-
files for the cased= —0.5 andJ=—1.0, respectively. The 01} .
changes seen iDc(6) in Fig. 4 can also be seen in the (b)
corresponding spreading profiles. In Figga)7and 7b) the 0.0 . . .
simulation results are shown with circles, a spherical cap fit 0 50 100 150 200 250

with a solid line, and a Gaussian fit with a dotted line. The

main result is that with increasing attractive interactions, the

shape of profiles changes from the spherical cap towards a G, 7. Typical spreading profiles obtained from the MC simu-

Gaussian shapéexcept for the highest coverageShese |ations with(a) J= — 0.5 and(b) J= — 1.0 circles. Solid and dotted

results show the intimate connection betweg(#) and Jines denote spherical cap and Gaussian fits, respectively. The insets

spreading profiles; in the regime wheg () is almost con-  show simulated spreading profiles at three different times.

stant, the corresponding profile shape is close to the Gauss-

ian limit. mainder of the equation defines the mobility The thermo-
dynamic factor is related to the density fluctuations of the

V. MEAN-FIELD THEORY FOR COLLECTIVE system, while the mobility can be written as
DIFFUSION

x [lattice units]

To better understand the somewhat unusual behavior of m=1|
collective diffusion of chainlike molecules, we start from the t
Green-Kubo relationl]

ono
|n14_t<(Arc.m) >’ (6

—

where Arg m=rem(t)—rem(0) is the displacement of the

D= lim j dt(j(O)-j(t)) , 4) center of _mass of all the chains and rcm_(t)
—2((8n)%) Jo =(1/n)={_,r;(t). In the theory presented here, we will treat
the two factorsy, 1 andm separately.
wheren is the number of chaing(t)=3!_,v,(t) is the total A. Thermodynamic factor

particle current, and(n)?) is the mean-square fluctuation ) ) .
of chains(in a finite areaA). In terms of the mean-square To estimate the thermodynamic factor we consider a gen-

displacements of the individual chains, this can be written a§'alization of the simple thermodynamic theory presented for
athermal chains in Ref12]. We take as a starting point an

(n) 1 n 2 effective Helmholz free energly as
— <( ri(t>—ri(0>) >Exalm,

> o

=1

Dc=Ilim —
C _a((8m)?) 4tn

F=Fo—na#®—kgT In —nkgT Inw. (7)

) (M—n)!n!
where Fi(t) is the position of the center of mass of thte  The first termF, is a constant, while the second tei,
chain at time t. In this equation, the term)(g1 =na#® comes from attractive interactions between segments
=(n)/{(6n)?) defines the thermodynamic factor and the re-of different chains[1] and is temperature dependent.
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We calculatedg;,; directly from the MC simulations at dif- ' ' ' '
ferent coverages to estimateandb and verified that this 2 (a) ’
approximation is well satisfied. For the casks —0.5 and
J=-1.0 the resulting values of these parameters are
alkgT=1.8, b=1.6 anda/kgT=2.7, b=1.4, respectively,
while for the athermal case=b=0. The third term comes
from the entropy of the center of the mass of thpolymers
and it is here approximated by the expression for a 2D Lang-
muir gas on a latticg1]. The parameteM =L? denotes the
total number of lattice sites and thé#s=nN/M (for the FB 5L .
model 6=4nNgg/M due to the exclusion rulgsThe last
term in Eq.(7) is the entropic contribution from the chainlike 0 s s s s
nature of the molecules, wheve is the number of possible 00 02 04 06 08 10
configurations of each chain and is a model-dependent quan- 0

tity. For the present case of chainlike molecules, we approxi-
mate it by decoupling the total number of configurations into
the product of two terms sor (b) { T

20 1

15 8

10 8

w1(0) and Wz(e)

w(0)=wi(h)wy (), (8)

60

wherew, (6) is the entropy arising from a segment at the end
of the chain andv,(6) from each segment in the middle of
the chain. For the FB model with different interactions, we
have numerically determined;(8) andw,(6). In Fig. 8a)
we show the behavior ofv; and w, with three different
values ofJ, namely,J=0, J=-0.5, andJ=—-1.0. These
guantities can be easily interpolated for all covera@es.

The chemical potentiale can be calculated fronk by
using u=(dF/dn)t v, which gives

1/ x0(®)

1.0

FIG. 8. (a) Coverage dependence wf(#) (three upper curves
, (9 and w,(6) (three lower curvesfor J=0 (circles, J=-0.5
(squarey andJ= —1.0(triangles. Results of fittind 20] are shown
where p= /N is the number of chain molecules per unit by solid lines. In the zero-coverage limit, both quantities have been
area withN segments and’ =a/kgT. It can be shown that computed numerically for a single fluctuating chain and thus do not
the thermodynamic factor can be written asal depend on the value af. (b) Calculated coverage dependence of

_ . Xo (6) for 3=0 (circles, J=—0.5 (squarey andJ=—1.0 (tri-
= 60[d(u/kgT)/96] [1] and thus we obtain angle$. Solid lines show results of numerical calculations using

Egs.(8) and (10).

MO _ KO ipanyeos

KeT kel In

p
E) —In(w)

0 dIn(w
Xo =1-a'b(b+1)6°+ ———¢ w)

N—6 a0 (10

For the athermal cadé= 16 gives the best results. Thus, for

In Fig. 8b) the markers show results fqral(e) as ob- increasing attraction, the approximation of &8) seems to
become more accurate.

tained from accurate MC simulations of the density fluctua-
tions of the FB mode(with Ngg=6) in equilibrium, as ex-
trapolated to an infinite system size. At very high B. Calculation of mobility
concentrations density fluctuations are so small that it is very . . L :
difficult to obtain accurate results. Furthermore, with attrac- While the _thermodynar_nlc factor_ contains |nfc_)r_m_at|on
tive interactions J#0) for coverage¥=0.8 the dynamics about the equilibrium den§|ty fluctuations, the mob|hty|§

of the system slows dowfil9] and thus we present here determ|_ned by the dynamics of th_e center-of-mass motion of
results only for smaller coverages. Using the approximatiorin€ Particles. To calculata theoretically we use the recently
of Eqg. (10) with numerically determined/,(8) andw,(6) of dgveloped dynamlcal mean—ﬂe@MF) theory[13], which

Fig. 8@ with Ng=N for the athermal case, the results showVYi€lds an approximate expression foras

that the true magnitude qul(e) is somewhat underesti- /2

mated throughout the range of covera@j#g]. However, if mDMpzfl“, 11

the magnitude of the thermodynamic factor is known for

some coverages, the effective chain lenbthappearing in

Eg. (8) can be used as an additional fitting parameter towvhere/ is the effective jump length anBl is the average
improve the results. In Fig.(B) we show the results of this jump rate. This formulation makes it very efficient to evalu-
approach, with only one parametdrfitted to our MC data ate m numerically and recently has been shown to give a
for Xgl(e). The corresponding values of the parameters fovery good approximation of the trua for various strongly
J=-0.5 andJ=-1.0 areN=11 andN=6, respectively. interacting systemgl3].
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FIG. 10. Solid line shows the effective potentigl(r)/kgT be-
Q~ 0.08 tween the athermal chains in the FB mokie the text for details
= The dotted line denotes a typical Lennard-Jones potential for com-
§ parison. The inset shows seven scaled correlation functi¢ng
S 0.06 for Ngg=6 and#=0.25, 0.40, 0.50, and 0.75; and fgz=12 and
- 6=0.25 and 0.50; and fdl=48 the cas&#=0.25. See the text for
= 0.04 details.
E denote the results of direct MC simulationsrof6). As can
< 002 be seen from the comparison, for the chainlike molecules
¥ D+(#) and m(6) behave quite differently; for athermal
00 chains even the curvatures of the two functions have oppo-

site signs.

VI. EFFECTIVE POTENTIAL

FIG. 9. (a) Coverage dependence wi( #) for J=0 (circles, J T .
= —0.5 (squarel andJ=— 1.0 (triangles. The corresponding re- The fact that the initial increase &f;(#6) is due to effec-

sults from the DMF theory are shown by solid, dotted, and dashediVe repulsive interactions between the molecules can be seen
lines, respectively. The data have been normalized by single sed? EG- (10), where the important term -16[dIn(w)/36]
ment mobility m, in the zero-coverage limitth) Comparison be- comes from entropic origin of the chainlike molecules

tweenm(d) and D+(6) with m(¢) plotted as in(a) and D(8) [11,_12. With increasing attraction, this entropy—induced_ re-
shown forJ=0 (solid line), J= —0.5 (dotted ling, andJ=—1.0 pulsion is compensated by the attractizg, and the maxi-

(dashed ling mum value ofD(6) is reduced in magnitude.
To study the effective potential corresponding to the en-

In Fig. %a) we show mobilities calculated from MC simu- tropic repulsion we calculated the chain-chain pair distribu-

lations of m(6) for the FB model for the case¥=0, J= tion fun.c.t|on 9(r) == {o(r=r;)&(ri")) [2,,1]’ whereri.|s
—0.5, andJ= — 1.0, using the definition of E6). The data the position of the center of mass of chaimand the prime

are normalized with the mobility of one segment. In the indicates that terms with=i' are to be omitted. Frorg(r)
same figure we show also the results calculated from thive extracted numerically the effective pair interaction poten-
DMF theory of Eq.(11). The effective jump length’ has tial V¢(r)/kgT for athermal chains. This can be done by first

been estimated from the zero-coverage limit, wheg€0) calculating the direct correlation functioa(r) from the
=1 and thusn,=D;. In the athermal case the DMF theory Omstein-Zernike relatiofi22]

is in good agreement with simulation results, but with in-

creasing attraction between the chains it starts to deviate h(r)y=c(r)+ 0f h(r)c(|r—r'dr’, (12
more from the MC simulation results. This behavior is physi-

cally reasonable because attractive interactions Strength%ereh(r)=g(r)—1 andr is distance in lattice units. When
the effect of dynamical correlations that are not included inc(r) is known, V,(r)/ksT can be calculated by using the
the DMF theony[13]. Despite this, the DMF theory gives the | P B
o . _ ypernetted-chain theof23]

qualitative behavior om(#) rather well even in case of at-
tractive chains. c(r)=—V(N/kgT+h(r)=In[h(r)+1]. (13

A commonly used method to approximate the mobility is
based on the Darken equatifh]. It states that the mobility In Fig. 10 we showV(r)/kgT for the athermal case and
can be approximated by the tracer diffusion coefficient, i.e.for 6=0.25, which shows a strong repulsion extending up to
m(0)~D+(#). In Fig. 9Ab) we show the complete results several lattice sitef24]. As a comparison in the same figure
from simulations ofD+(#) with the interaction parameters there is also a typical Lennard-Jones potential that is more
J=0,J=-0.5, andJ=—1.0. In same figure, the markers repulsive at small distances. An interesting result of the
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analysis is that for athermal chains, all the computed paidiffusive dynamics of polymers in two dimensions is funda-
correlation functions for coverages<0.7 and for several mentally different from the 3D case, where entanglement
chain lengths[12] collapse to a single function, which is effects dominate in dense melts of longer ch4Rf. In the
given byg(T)=G(r 6%/NE;), wherea~0.38 andB~0.55. 2D case, the entropic repulsion sets in for relatively short
These scaled correlation functions are shown in the inset afhains already, after whicB(6) displays only weak de-
Fig. 10. pendence on the chain lengthwithout the trivial 1N pref-
actor[12].
The functional dependence DBf-(6) on the coverage has

) _ interesting consequences for the profiles of spreading films

_In this paper we have presented a systematic study qh the submonolayer regime. When the entropy-generated re-
diffusion and spreading of chainlike molecules, in part in-pyisive interactions dominate, the droplets assume a spheri-
spired by the non-Gaussian submonolayer film profiles obga| cap type of steep shape. Contrary to the suggestion of
served in most experiments. Using Monte Carlo simulationRef, [9], no assumptions about the film edge being a phase
with the ﬂuctuating bond model, we have calculated the dif'boundary between a condensate and Vapor need to be evoked
fusion coefficients as a function of coverage, generalizing thiere. With increasing attractive interactions, these shapes
results for athermal chains of R¢fL2] to chains with attrac-  eyolve towards the Gaussian shape. If these interactions
tiVe interchain interactions. Typ|Ca”y, the CO"eCtiVe diffu- dominate and)c(a) is a decreasing function (ﬁ’ prof"es
sion coefficientDc(6) increases initially and displays a emerge that are narrower than Gaussians. Thus the submono-
maximum around?~0.7. The strength of the peak decreasesayer spreading experiments constitute a sensitive measure
with increasing attraction. on the role of interactions in the diffusive dynamics of poly-

We have also developed a mean-field approximation fomers on surfaces.

the thermodynamic factor iD., while the mobility is esti-
mated numerically from the dynamical mean-field theory.
The theory reveals that the behavior observe®i(6) is
due to an entropy-induced repulsive interaction. We also ex-
tract this interaction numerically from the pair correlation  This work was supported in part by the Academy of Fin-
functions for athermal chains. It is interesting to note that thdand.

VII. DISCUSSION AND CONCLUSIONS
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