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Dynamics of chainlike molecules on surfaces
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We consider the diffusion and spreading of chainlike molecules on solid surfaces. We first show that the
steep spherical cap shape density profiles, observed in some submonolayer experiments on spreading polymer
films, imply that the collective diffusion coefficientDC(u) must be an increasing function of the surface
coverageu for small and intermediate coverages. Through simulations of a discrete model of interacting
chainlike molecules, we demonstrate that this is caused by an entropy-induced repulsive interaction. Excellent
agreement is found between experimental and numerically obtained density profiles in this case, demonstrating
that steep submonolayer film edges naturally arise due to the diffusive properties of chainlike molecules. When
the entropic repulsion dominates over interchain attractions,DC(u) first increases as a function ofu but then
eventually approaches zero foru→1. The maximum value ofDC(u) decreases for increasing attractive
interactions, leading to density profiles that are in between spherical cap and Gaussian shapes. We also develop
an analytic mean-field approach to explain the diffusive behavior of chainlike molecules. The thermodynamic
factor in DC(u) is evaluated using effective free-energy arguments and the chain mobility is calculated
numerically using the recently developed dynamic mean-field theory. Good agreement is obtained between
theory and simulations.@S1063-651X~98!00202-5#

PACS number~s!: 83.10.Nn, 68.35.Fx, 68.10.Gw
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I. INTRODUCTION

The dynamics of polymers on solid surfaces is an int
esting theoretical problem that has important applications
lated to thin surface films. A central role in such systems
played by the diffusive dynamics of the chains. While t
diffusion of adatoms and small molecules on surfaces is
extensively studied problem@1,2#, there are relatively few
studies of the diffusion of more complicated molecules a
especially polymers on surfaces@3–5#. The pioneering ex-
periments of Arena, Westre, and George@3# on short-chain
alcanes on metal surfaces revealed that the coverage de
dence of the collective diffusion coefficientDC(u) may
show unusual features. For some molecules it is appr
mately constant, while for others it is an increasing funct
of coverage for a wide range of values ofu.

There also has been substantial interest recently on
spreading dynamics of molecularly thin oil films on sol
substrates@6–10#. Many of these experiments are perform
by depositing tiny, very flat droplets on surfaces. In the lim
where the film becomes less than one monolayer in th
ness, the spreading molecules are all in contact with the
face forming a two-dimensional~2D! molecular gas. In this
regime, the dynamics of spreading and consequently the
sity profiles of the film edges are determined by the diffus
of the molecules. Experimental studies of spreading in
submonolayer regime@7–9# reveal that most of the measure
film edge profiles are not well approximated by the Gauss
function but assume a steeper shape@11# that can be well
fitted by a spherical cap in the rotationally symmetric ca
i.e., droplet spreading@8,9#.

In the regime where the diffusion equation~Fick’s law! is
a valid description, a non-Gaussian profile indicates that
collective diffusion constantDC(u) must have nontrivial
571063-651X/98/57~2!/1864~9!/$15.00
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coverage dependence. In the present context this was
ized in conjunction with the experiments of Albrechtet al.
@8#, where the observed spherical cap shaped droplets c
be reproduced by Monte Carlo simulations of spreading
flexible chains in two dimensions. Analyzed in terms
Fick’s law with a coverage-dependentDc(u), it was con-
cluded in Ref.@11# thatDc(u) is a stronglyincreasingfunc-
tion of coverage up tou'0.4 because of entropic repulsio
between the chains.

In this work our aim is to extend the work presented
Ref. @12# to carry out a systematic study of the spreading a
diffusion of interacting chainlike molecules on surfaces.
begin with, we present an analysis of density profiles
spreading droplets with qualitatively different forms
Dc(u). Using Fick’s law, we show how the spherical ca
type of shapes result from the increase ofDc(u) vs u and
then quantitatively determineDc(u) from the experimental
profiles of Ref.@8# up to u'0.4. By extensive Monte Carlo
simulations of a discrete model of interacting chainlike m
ecules, we then computeDc(u) for all coverages and dem
onstrate that the chainlike nature of the molecules induce
strong repulsive interaction. When this dominates over in
chain attractions,DC(u) first increases as a function ofu as
deduced from the experiments, but eventually must go
zero for u→1. The relative maximum ofDC(u) decreases
for increasing attractions. We also examine the profiles
spreading droplets in detail for various interactions. For
case of pure entropic repulsion, we find excellent agreem
between experimental and numerically obtained profil
This demonstrates that steep density profiles can be obta
from energetic considerations without having to assume
the film edge acts as a phase boundary between a 2D
densate and a vapor phase, as suggested previously@9#. For
increasing attractive interactions, the corresponding dro
1864 © 1998 The American Physical Society
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57 1865DYNAMICS OF CHAINLIKE MOLECULES ON SURFACES
shapes are in between spherical cap and Gaussian shap
Finally, we develop an analytic mean-field approach

explain the behavior of the collective diffusion coefficie
for chainlike molecules by using the fact thatDC(u) can be
expressed as the product of thermodynamic factorx0

21 and
the mobilitym. The thermodynamic factor is evaluated usi
effective free-energy arguments and the chain mobility
calculated numerically using the recently developed dyna
mean-field theory@13#. Good agreement is found betwee
theory and the numerical simulations.

The outline of the paper is as follows. In Sec. II we d
scribe the analysis of spreading profiles from the diffus
equation, which gives partial information about the colle
tive diffusion coefficient. The lattice model used in this wo
is explained in Sec. III. The results of numerical simulatio
are presented in Sec. IV. We discuss briefly the results
athermal chains presented in Ref.@12# and present complet
results for chains with attractive interchain interactions.
Sec. V we present the mean-field theory for the thermo
namic factorx0

21 and the mobilitym. In Sec. VI we use the
chain-chain pair distribution function to extract the effecti
pair interaction potential for athermal chains. Finally, in S
VII we briefly summarize our main results.

II. ANALYSIS OF SPREADING PROFILES FROM THE
DIFFUSION EQUATION

As discussed in the Introduction, experimental measu
ments of spreading density profiles of a polymer film in t
submonolayer regime can be used to obtain informa
about the coverage dependence of the collective diffus
coefficientDC(u). This was realized by Herminghauset al.
@11#, who considered the spreading of polydimethylsiloxa
~PDMS! on metal surfaces, including the data of Ref.@8#. A
typical late-time spreading profile taken from this experim
is shown in Fig. 1. The height of the profile is measured
angstroms, but it actually describes the average areal de
distribution of polymers on the surface. As noted in Ref.@8#,

FIG. 1. Typical late-time submonolayer spreading profile fro
experiments of PDMS spreading on a silver surface@8# ~filled
circles!. The height of the experimental profile is measured in a
stroms. Dashed and dotted lines are Gaussian and spherical ca
respectively. The solid line shows the solution of Eq.~1! using
DC(u) shown in the inset.DC(u) has been normalized by the di
fusion coefficient in the zero coverage limitDC(0).
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this and the other submonolayer profiles can be fitted v
well with spherical cap functionu(x)5u01Ar 22x2, which
is shown in Fig. 1 with a dotted line (u0 and r are fitting
parameters!. In the same figure we also show a Gauss
profile with a dashed line for comparison. While the shape
the profile clearly follows the spherical cap shape for mos
the range of densities, at the lowest coverages the film e
displays a Gaussian shaped tail.

A qualitative way of analyzing the implications of th
density profiles forDC(u) is to apply the nonlinear diffusion
equation@1,11#

]u~x,t !

]t
5

]

]xFDC~u!
]u~x,t !

]x G . ~1!

Starting from ad-function type of initial profile, the solution
u(x,t) of Eq. ~1! is an exact Gaussian profile for all time
whenDC5const. In Fig. 2 we show typical results from th
numerical solution of Eq.~1! for three choices ofDC(u),
including monotonicaldecreasingand increasingfunctions
of coveragesDC(u)5120.99u and DC(u)50.0110.99u,
respectively. For the first case, profiles are obtained that
belowthe Gaussians for high and intermediate coverages
the other hand, for cases whereDC(u) increases, profiles are
abovethe Gaussian solution. This is exactly what was o
served in the experiments~see Fig. 1! and thus we can con
clude thatDC(u) must be anincreasingfunction of coverage
for the range of coverages corresponding to the density
files ~see also Ref.@11#!.

It is possible to determineDC(u) more quantitatively by
solving density profiles from Eq.~1! and matching them with
the experimental ones. We did this by using a fitting functi
for DC(u) of the formDC(u)5c11c2tanh@c3(u2c4)#, where
c1, c2, c3, andc4 are fitting parameters. By adjusting the
parameters it is relatively easy to obtain profiles with sha
closely matching the experimental ones of Ref.@8#, with c1
50.159,c250.144,c355.174, andc450.345. The resulting
profile is shown in Fig. 1 with a solid line. The matching
the profiles also fixes the normalized coverage scale fr
Fick’s law corresponding to the effective layer thickness
the experiments. The analysis reveals thatDC(u) at very low
concentrations is almost constant and then monotonically

-
fits,

FIG. 2. Typical results for the density profile of a droplet fro
numerical solutions of Eq.~1! with different choices of the function
DC(u).
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1866 57HJELT, HERMINGHAUS, ALA-NISSILA, AND YING
creases up to aboutu50.4, in agreement with Ref.@11#. The
resultingDC(u) from the best fits is shown in the inset o
Fig. 1. We note that the behavior ofDC(u) at higher values
of u cannot be obtained from this procedure because
maximum value of the experimental profile at hand is
ready less thanu50.4.

III. MODEL OF CHAINLIKE MOLECULES

To determineDC(u) for all values ofu and to study the
effects arising from the chainlike nature of the diffusing m
ecules on surfaces, we will in the present work use a disc
model called the fluctuating bond~FB! model @14#. This
minimal model of polymers is widely used for simulations
many-chain systems@15#. The idea in the FB model is that
is a coarse-grained model of real polymer chains. Real p
mers, such as simple polyethylene, consist of repeated
ments of CH2 monomers where carbon atoms are bound
each other forming a long chain. The bond length and
bond angle between adjacent carbon atoms are almost fi
However, the torsional angle between adjacent bonds
have different values and thus the end-to-end distance
long chain of CH2 segments may vary significantly. On
coarse-grained level then, such a chain can be described
reduced number of effective segments.

In the 2D version of FB model the chains in the mod
consist of connected segments that occupy sites on a sq
lattice. Each segment prohibits all other segments from
cupying its nearest- or next-nearest-neighbor lattice sites
the model~see Fig. 3!, the distance between adjacent se
mentsl can vary between 2<l <A13 in lattice units, where
the upper limit prevents bonds from crossing each oth
With these restrictions there are 36 different bond vector
the model. The FB model has been shown to give st
properties, such as pressure, in full agreement with sim
tions of continuum models@16#. Furthermore, the FB mode
incorporates the same type of dynamics for a single chai
the continuum Rouse model@14#.

To consider the general case where there are attrac
interactions between the chains and the flexibility of in
vidual chains can also vary, we have used the Hamiltoni

FIG. 3. Typical configuration of a chain in the FB model wi
NFB56. The segments are shown by squares. Stars denote the
blocked by the lowermost segment. An allowed move of one of
segments is shown by a dashed line.
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5

4e

kBT(
lÞ l 8

n

(
i ,i 8

NFB F S s

r l ,l 8; i ,i 8
D 12

2S s

r l ,l 8; i ,i 8
D 6G

2
Es

kBT(
l 51

n

(
i 51

NFB21

cos~f l ,i !. ~2!

In Eq. ~2!, the first term is a Lennard-Jones type of potent
whereJ[4e/kBT is the strength of the interaction,r l ,l 8; i ,i 8 is
the distance between segmentsi and i 8 of different chainsl
and l 8, ands was chosen such that the potential minimu
was at the distance of two in lattice units. The cutoff rad
of the potential wasA10 lattice units, after which the poten
tial is small enough to give a negligible contribution. In th
summations,n is the number of chains andNFB is the num-
ber of segments in each chain. The second term controls
stiffness of each chain, withf l ,i being the angle betwee
two adjacent bondsi andi 11 in chainl andK[Es /kBT the
stiffness parameter. For increasingEs or decreasing tempera
ture T, the chains become more stiff.

Dynamics is introduced in the model by Metropol
moves of single segments, with a probability of accepta
min@e2DHeff /kBT,1#, whereDHeff is the energy difference be
tween final and initial configurations for acceptable moves
a nearest-neighbor site, for which site exclusion and bo
length restrictions must be satisfied. One Monte Carlo~MC!
time step is defined as an attempt to move each segme
every chain. In Fig. 3 we show a typical configuration of
chain in the FB model forNFB56. One possible move of a
segment is shown by the dashed line. It should be noted
there are two main limitations in the present model. Fir
since the dynamics within the FB model consists of sin
segment moves only and there are no direct translatio
modes, the limit of a rigid rod is not well defined@17#. Sec-
ond, the dynamics is purely two dimensional, which assum
that the chain-surface attraction is strong and the chain d
sity low enough so that all chains lie flat on the surface.
shown in Sec. II, for PDMS on silver these conditions se
to be met at least foru less that about 0.4.

IV. NUMERICAL SIMULATIONS

A. Athermal chains

To quantitatively determine the coverage dependence
diffusion, we have performed extensive MC simulations u
ing the FB model explained in Sec. III. First, we consider t
case of fully flexible, athermal chains for whichJ5K50
@12#. The linear size of the 2D square lattice we used w
L5180 for most cases. To calculateDC(u) we used the
temporal decay of the Fourier transformed density autoc
relation function S(k,t)5S(k,0)e2k2DC(u)t, where S(k,0)
becomes constant in the hydrodynamic limitk→0. The
density-fluctuation autocorrelation function is defined
S(r ,t)5^du(r ,t)du(0,0)&, where du(r ,t)[u(r ,t)
2^u(r ,t)& andS(k,t) is its Fourier transform@18#. It is cal-
culated separately for each fixed value of the average
malized coverageu[^u(r ,t)&, which for the FB model is
defined to beu54nNFB /L2. In Fig. 4 we show results o
these calculations for the caseNFB56 with circles. The re-
sults are normalized withD1, which is the diffusion constan
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57 1867DYNAMICS OF CHAINLIKE MOLECULES ON SURFACES
of a single monomer (NFB51) in the limit u→0. Initially,
DC(u) increases up tou'0.7, after which it rapidly ap-
proaches zero. The initial behavior ofDC(u) is in good
agreement with results obtained from the shape of
spreading profiles.

It is interesting to compare the behavior ofDC(u) with
the tracer diffusion coefficientof individual chainsDT(u)
defined by

DT5 lim
t→`

1

4tn(i 51

n

^urW i~ t !2rW i~0!u2&, ~3!

whererW i(t) is the position vector of thei th chain at timet. In
Fig. 5 we show the results from simulations for the atherm
case with circles. In the limitu→0, DC(0)5DT(0) and thus
we use the same normalization as in Fig. 4. As expec
from increased interchain blocking,DT(u) is a monotoni-

FIG. 4. DC(u) for three different values ofJ as computed from
MC simulations of the FB model. Circles are forJ50, squares for
J520.5, and triangles forJ521.0. Solid lines are only guides t
the eye. The curves are normalized by the single monomer diffu
coefficientD1 in the zero coverage limit. The error bars are of t
size of the symbols or smaller.

FIG. 5. Tracer diffusion coefficientDT(u) for three different
values ofJ. Circles are forJ50, squares forJ520.5, and triangles
for J521.0. Solid lines are only guides to the eye. The curves
normalized by the single monomer diffusion coefficientD1. The
error bars are smaller than the size of the symbols.
e

l
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cally decreasing function ofu. This is a striking example of
how fundamentally different the behavior of the two types
diffusion coefficients can be.

We have also studied the effect of chain length and st
ness to collective diffusion, and a summary of the results
be found in Ref.@12#. When the length of the chains in
creases, diffusion slows down and the maximum ofDC(u)
becomes more pronounced relative to the zero coverage
of DC(u50) ~see Figs. 1 and 4 in Ref.@12#!. However,
when the 1/NFB prefactor for diffusion with single segmen
dynamics is divided out, theDC(u) vs u curves are almos
identical forNFB56, 24, and 48, revealing the universal b
havior of 2D polymer diffusion@12#. With increasing stiff-
ness diffusion slows down too, but now the maximum
DC(u) becomes less pronounced.

B. Chains with attractive interactions

To study the effect of attractive interactions betwe
polymers we used the FB model with the Hamiltonian of E
~2! with two interaction parameters, namely,J520.5 and
J521.0. For the results presented here, we considered f
flexible chains (K50) of lengthNFB56. The sizes of the
lattices in the MC simulations varied from 1003100 to
1803180.

The results for the two cases as obtained from the de
of S(k,t) are shown in Fig. 4. As the strength of the attra
tive interaction increases, diffusion slows down, but t
overall behavior as a function ofu is qualitatively similar to
the athermal case. The main influence of the attraction i
significantly reduce the relative height of the maximum
DC(u) @19#.

To compare with the athermal case, we also calcula
DT(u) for which the results are shown in Fig. 5. When t
strength of the interaction increases,DT(u) decreases more
rapidly as a function of concentration.

C. Spreading of droplets

We also used the FB model to directly simulate t
spreading of 2D submonolayer droplets. The chains w
initially confined to a circular region and after equilibratio
the spatial constraints were removed. The consequent spr
ing was monitored and corresponding density profiles ca
lated as a function of time. We find that within the accura
of the fits, there is a linear relationship between the exp
mental and MC time scales, which supports the use of
single-segment dynamics within the FB model.

In Fig. 6 we show a comparison between three exp
mental submonolayer profiles@8#, profiles obtained from the
MC simulations for athermal chains, and profiles compu
using Eq. ~1! with the tanh fitting function forDC(u) as
explained previously. The agreement between all the profi
is excellent, demonstrating the consistency of our approa
It also shows that the behavior of the PDMS polymers u
in the experiment can be most simply explained in terms
athermal chain dynamics, with the entropic repulsion dom
nating. This is in contrast to the experiments of Ref.@9#,
where the steep film edges were assumed to be a 1D p
boundary between a 2D condensate and a vapor phase
results here demonstrate that no such assumptions need
made; the steep spherical cap shapes of submonolayer d
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1868 57HJELT, HERMINGHAUS, ALA-NISSILA, AND YING
lets are expected to be agenericsignature of strongly repul
sive effective interactions.

In Figs. 7~a! and 7~b! we show additional spreading pro
files for the casesJ520.5 andJ521.0, respectively. The
changes seen inDC(u) in Fig. 4 can also be seen in th
corresponding spreading profiles. In Figs. 7~a! and 7~b! the
simulation results are shown with circles, a spherical cap
with a solid line, and a Gaussian fit with a dotted line. T
main result is that with increasing attractive interactions,
shape of profiles changes from the spherical cap towar
Gaussian shape~except for the highest coverages!. These
results show the intimate connection betweenDC(u) and
spreading profiles; in the regime whereDC(u) is almost con-
stant, the corresponding profile shape is close to the Ga
ian limit.

V. MEAN-FIELD THEORY FOR COLLECTIVE
DIFFUSION

To better understand the somewhat unusual behavio
collective diffusion of chainlike molecules, we start from th
Green-Kubo relation@1#

DC5 lim
t→`

1

2^~dn!2&
E

0

`

dt^JW~0!•JW~ t !& , ~4!

wheren is the number of chains,JW (t)5( i 51
n vW i(t) is the total

particle current, and̂(dn)2& is the mean-square fluctuatio
of chains~in a finite areaA). In terms of the mean-squar
displacements of the individual chains, this can be written

DC5 lim
t→`

^n&

^~dn!2&

1

4tnK S (
i 51

n

rW i~ t !2rW i~0!D 2L [x0
21m,

~5!

where rW i(t) is the position of the center of mass of thei th
chain at time t. In this equation, the termx0

21

5^n&/^(dn)2& defines the thermodynamic factor and the

FIG. 6. Comparison between three experimental submonol
profiles measured after 50, 80, and 150 min following deposition
PDMS on silver@8,12# ~circles!, MC simulations of 2D circular
droplets from the FB model withNFB56 ~squares!, and numerical
solutions of the nonlinear diffusion equation~solid lines!. See the
text for details.
t
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mainder of the equation defines the mobilitym. The thermo-
dynamic factor is related to the density fluctuations of t
system, while the mobility can be written as

m5 lim
t→`

n

4t
^~DrWc.m.!

2&, ~6!

where DrWc.m.5rWc.m.(t)2rWc.m.(0) is the displacement of the
center of mass of all the chains and rWc.m.(t)
[(1/n)( i 51

n rW i(t). In the theory presented here, we will tre
the two factorsx0

21 andm separately.

A. Thermodynamic factor

To estimate the thermodynamic factor we consider a g
eralization of the simple thermodynamic theory presented
athermal chains in Ref.@12#. We take as a starting point a
effective Helmholz free energyF as

F5F02naub2kBT lnF n!

~M2n!!n! G2nkBT lnw. ~7!

The first termF0 is a constant, while the second termEint
5naub comes from attractive interactions between segme
of different chains @1# and is temperature dependen

FIG. 7. Typical spreading profiles obtained from the MC sim
lations with~a! J520.5 and~b! J521.0 circles. Solid and dotted
lines denote spherical cap and Gaussian fits, respectively. The i
show simulated spreading profiles at three different times.
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57 1869DYNAMICS OF CHAINLIKE MOLECULES ON SURFACES
We calculatedEint directly from the MC simulations at dif-
ferent coverages to estimatea and b and verified that this
approximation is well satisfied. For the casesJ520.5 and
J521.0 the resulting values of these parameters
a/kBT51.8, b51.6 anda/kBT52.7, b51.4, respectively,
while for the athermal casea5b50. The third term comes
from the entropy of the center of the mass of then polymers
and it is here approximated by the expression for a 2D La
muir gas on a lattice@1#. The parameterM5L2 denotes the
total number of lattice sites and thusu5nN/M ~for the FB
model u54nNFB /M due to the exclusion rules!. The last
term in Eq.~7! is the entropic contribution from the chainlik
nature of the molecules, wherew is the number of possible
configurations of each chain and is a model-dependent q
tity. For the present case of chainlike molecules, we appr
mate it by decoupling the total number of configurations in
the product of two terms

w~u!5w1
2~u!w2

N22~u!, ~8!

wherew1(u) is the entropy arising from a segment at the e
of the chain andw2(u) from each segment in the middle o
the chain. For the FB model with different interactions, w
have numerically determinedw1(u) andw2(u). In Fig. 8~a!
we show the behavior ofw1 and w2 with three different
values ofJ, namely,J50, J520.5, andJ521.0. These
quantities can be easily interpolated for all coverages@20#.

The chemical potentialm can be calculated fromF by
usingm5(]F/]n)T,V , which gives

m~u!

kBT
5

m0

kBT
2a8~b11!ub1F lnS r

12r D2 ln~w!G , ~9!

where r5u/N is the number of chain molecules per un
area withN segments anda85a/kBT. It can be shown tha
the thermodynamic factor can be written asx0

21

5u@](m/kBT)/]u# @1# and thus we obtain

x0
21512a8b~b11!ub1

u

N2u
2u

] ln~w!

]u
. ~10!

In Fig. 8~b! the markers show results forx0
21(u) as ob-

tained from accurate MC simulations of the density fluctu
tions of the FB model~with NFB56) in equilibrium, as ex-
trapolated to an infinite system size. At very hig
concentrations density fluctuations are so small that it is v
difficult to obtain accurate results. Furthermore, with attr
tive interactions (JÞ0) for coveragesu*0.8 the dynamics
of the system slows down@19# and thus we present her
results only for smaller coverages. Using the approximat
of Eq. ~10! with numerically determinedw1(u) andw2(u) of
Fig. 8~a! with NFB5N for the athermal case, the results sho
that the true magnitude ofx0

21(u) is somewhat underesti
mated throughout the range of coverages@12#. However, if
the magnitude of the thermodynamic factor is known
some coverages, the effective chain lengthN appearing in
Eq. ~8! can be used as an additional fitting parameter
improve the results. In Fig. 8~b! we show the results of this
approach, with only one parameterN fitted to our MC data
for x0

21(u). The corresponding values of the parameters
J520.5 andJ521.0 areN511 andN56, respectively.
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For the athermal caseN516 gives the best results. Thus, fo
increasing attraction, the approximation of Eq.~8! seems to
become more accurate.

B. Calculation of mobility

While the thermodynamic factor contains informatio
about the equilibrium density fluctuations, the mobilitym is
determined by the dynamics of the center-of-mass motion
the particles. To calculatem theoretically we use the recentl
developed dynamical mean-field~DMF! theory @13#, which
yields an approximate expression form as

mDMF5
l 2

4
G, ~11!

where l is the effective jump length andG is the average
jump rate. This formulation makes it very efficient to eval
ate m numerically and recently has been shown to give
very good approximation of the truem for various strongly
interacting systems@13#.

FIG. 8. ~a! Coverage dependence ofw1(u) ~three upper curves!
and w2(u) ~three lower curves! for J50 ~circles!, J520.5
~squares!, andJ521.0 ~triangles!. Results of fitting@20# are shown
by solid lines. In the zero-coverage limit, both quantities have b
computed numerically for a single fluctuating chain and thus do
depend on the value ofJ. ~b! Calculated coverage dependence
x0

21(u) for J50 ~circles!, J520.5 ~squares!, and J521.0 ~tri-
angles!. Solid lines show results of numerical calculations usi
Eqs.~8! and ~10!.
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In Fig. 9~a! we show mobilities calculated from MC simu
lations of m(u) for the FB model for the casesJ50, J5
20.5, andJ521.0, using the definition of Eq.~6!. The data
are normalized with the mobility of one segmentm1. In the
same figure we show also the results calculated from
DMF theory of Eq.~11!. The effective jump lengthl has
been estimated from the zero-coverage limit, wherex0(0)
51 and thusm15D1. In the athermal case the DMF theo
is in good agreement with simulation results, but with
creasing attraction between the chains it starts to dev
more from the MC simulation results. This behavior is phy
cally reasonable because attractive interactions streng
the effect of dynamical correlations that are not included
the DMF theory@13#. Despite this, the DMF theory gives th
qualitative behavior ofm(u) rather well even in case of at
tractive chains.

A commonly used method to approximate the mobility
based on the Darken equation@1#. It states that the mobility
can be approximated by the tracer diffusion coefficient, i
m(u)'DT(u). In Fig. 9~b! we show the complete result
from simulations ofDT(u) with the interaction parameter
J50, J520.5, andJ521.0. In same figure, the marker

FIG. 9. ~a! Coverage dependence ofm(u) for J50 ~circles!, J
520.5 ~squares!, andJ521.0 ~triangles!. The corresponding re
sults from the DMF theory are shown by solid, dotted, and das
lines, respectively. The data have been normalized by single
ment mobility m1 in the zero-coverage limit.~b! Comparison be-
tween m(u) and DT(u) with m(u) plotted as in~a! and DT(u)
shown forJ50 ~solid line!, J520.5 ~dotted line!, and J521.0
~dashed line!.
e
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denote the results of direct MC simulations ofm(u). As can
be seen from the comparison, for the chainlike molecu
DT(u) and m(u) behave quite differently; for atherma
chains even the curvatures of the two functions have op
site signs.

VI. EFFECTIVE POTENTIAL

The fact that the initial increase ofDC(u) is due to effec-
tive repulsive interactions between the molecules can be s
in Eq. ~10!, where the important term 12u@] ln(w)/]u#
comes from entropic origin of the chainlike molecul
@11,12#. With increasing attraction, this entropy-induced r
pulsion is compensated by the attractiveEint and the maxi-
mum value ofDC(u) is reduced in magnitude.

To study the effective potential corresponding to the e
tropic repulsion we calculated the chain-chain pair distrib
tion function g(r )5( i ,i 8

8 ^d(r 2r i)d(r i 8)& @21#, where r i is
the position of the center of mass of chaini and the prime
indicates that terms withi 5 i 8 are to be omitted. Fromg(r )
we extracted numerically the effective pair interaction pote
tial Ve(r )/kBT for athermal chains. This can be done by fir
calculating the direct correlation functionc(r ) from the
Ornstein-Zernike relation@22#

h~r !5c~r !1uE h~r 8!c~ ur 2r 8u!dr8, ~12!

whereh(r )5g(r )21 andr is distance in lattice units. When
c(r ) is known, Ve(r )/kBT can be calculated by using th
hypernetted-chain theory@23#

c~r !52Ve~r !/kBT1h~r !2 ln@h~r !11#. ~13!

In Fig. 10 we showVe(r )/kBT for the athermal case an
for u50.25, which shows a strong repulsion extending up
several lattice sites@24#. As a comparison in the same figur
there is also a typical Lennard-Jones potential that is m
repulsive at small distances. An interesting result of

d
g-

FIG. 10. Solid line shows the effective potentialVe(r )/kBT be-
tween the athermal chains in the FB model~see the text for details!.
The dotted line denotes a typical Lennard-Jones potential for c

parison. The inset shows seven scaled correlation functionsg( r̃ )
for NFB56 andu50.25, 0.40, 0.50, and 0.75; and forNFB512 and
u50.25 and 0.50; and forN548 the caseu50.25. See the text for
details.
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analysis is that for athermal chains, all the computed p
correlation functions for coveragesu<0.7 and for severa
chain lengths@12# collapse to a single function, which i
given byg( r̃ )5G(rua/NFB

b ), wherea'0.38 andb'0.55.
These scaled correlation functions are shown in the inse
Fig. 10.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have presented a systematic study
diffusion and spreading of chainlike molecules, in part
spired by the non-Gaussian submonolayer film profiles
served in most experiments. Using Monte Carlo simulatio
with the fluctuating bond model, we have calculated the d
fusion coefficients as a function of coverage, generalizing
results for athermal chains of Ref.@12# to chains with attrac-
tive interchain interactions. Typically, the collective diffu
sion coefficientDC(u) increases initially and displays
maximum aroundu'0.7. The strength of the peak decreas
with increasing attraction.

We have also developed a mean-field approximation
the thermodynamic factor inDC , while the mobility is esti-
mated numerically from the dynamical mean-field theo
The theory reveals that the behavior observed inDC(u) is
due to an entropy-induced repulsive interaction. We also
tract this interaction numerically from the pair correlatio
functions for athermal chains. It is interesting to note that
ys
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diffusive dynamics of polymers in two dimensions is fund
mentally different from the 3D case, where entanglem
effects dominate in dense melts of longer chains@25#. In the
2D case, the entropic repulsion sets in for relatively sh
chains already, after whichDC(u) displays only weak de-
pendence on the chain lengthN without the trivial 1/N pref-
actor @12#.

The functional dependence ofDC(u) on the coverage ha
interesting consequences for the profiles of spreading fi
in the submonolayer regime. When the entropy-generated
pulsive interactions dominate, the droplets assume a sph
cal cap type of steep shape. Contrary to the suggestio
Ref. @9#, no assumptions about the film edge being a ph
boundary between a condensate and vapor need to be ev
here. With increasing attractive interactions, these sha
evolve towards the Gaussian shape. If these interact
dominate andDC(u) is a decreasing function ofu, profiles
emerge that are narrower than Gaussians. Thus the subm
layer spreading experiments constitute a sensitive mea
on the role of interactions in the diffusive dynamics of pol
mers on surfaces.
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